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5- D—(arabmo-temtol 1-yl)pyrrole (1) by oxidation with ceric ammonium nitrate is descnbed When
the reaction was applied to related furan derivatives, ethyl (5S5,6R,7R)-2-acetyl-5,6,7,8-
tetrabenzyloxyoct 2-enoate (8) was obtained as an E/Z mixture. © 1998 Elsevier Science Ltd. All

Pyrrole-2,5-dicarbaldehydes are sought after precursors for the synthesis of biologically active
compounds'? and several macrocycles®® displaying unusual chemical®, coordination® or physical
properties’. Among these, porphyrins represent one of the most extensively studied groups of
compounds, especially B-substituted porphyrins. The S-substituents not only exert much greater steric and
electronic effects on the porphyrin ring than do substituents at the meseo-aryl positions, but also induce the
porphyrin ring into a non-planar conformation which may control the biological properties in tetrapyrrole
systems,® for example photosynthesis, electron transfer, vitamin B;, biosynthesis, and so on. In addition
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to these important areas, f-substituted porphyrins have been found to be promising for treating hollow-

organ cancers. i

In spite of the growing interest over recent years in 3-substituted and 3,4-disubstituted pyrrole-2,5-
dicarbaldehydes, few procedures for the synthesis of these compounds have been reported 1.1 A well-

known method for formylation of pyrroles is the Vilsmeier-Haack reaction,'® but this method is not
applicable for the synthesis of pyrrole-2,5-dicarbaldehydes® owing to the fact that the first formyl group,
introduced at position 2, deactivates position 5 and directs the next formylation to position 4 leading to less
than 1% yield of the pyrrole-2,5-dicarbaldehydes.’ This difficulty has been overcome by multiple step
sequences™'? that involve protection and deprotection of the formyl groups or by the use'® of pyrroles
with substituents that are masked formyl groups. Recently Guilard ef al.!' have described a one-step
pathway to 3,4-disubstituted pyrrole-2,5-dicarbaldehydes in 22-65% yield starting from pyrrole-2-
carboxylic acid derivatives. 3,4-Disubstituted pyrroie-2,5-dicarbaldehydes have also been obtained from the
corresponding 2,5-dimethyl derivatives in 8% yield by oxidation with Pb{(OAc), - PbO, in acetic acid at
room temperature for 72 h.!*
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Other five-membered heterocycles bearing two formyl groups at 2,5-positions are also of interest. For
example, pyrrole-, thiophene- or furan-2,5-dicarbaldehydes are used for the synthesis of anaiogs of the well-
-known organic conductor TTF (tetrathiafulvalene) system.” Also several polyazamacrocycles® include 2,5-
joined furan rings in their structure.

Ceric ammonium nitrate (CAN) is a widely used reagent for the oxidation of numerous compounds
including alcohols, carbonyl compounas carboxylic acids and derivatives, organosulfur or organonitrogen

.

compounds and hydrocarbons.'® The oxidation of benzylic positions in arenes'® to alcohols and aldehydes

and the oxidative cleavage of alcohols,'®*® benzoins'® and glycols'™'® have also been reported. Its broad
applicability is owed to its mild reaction conditions, fast conversions and convenient working-up
prOCPd" eg. The use of this rg@_gem in hgtgrg(‘yglic Chemistry is scarce and, to the best of our knowledge. is
limited to the oxidation of furoin to furoic acid'® and of a polyhydroxyalkyl triazole to the corresponding

triazole-4-carboxylic acid'® when treated at 60 - 100 °C with ceric ammonium nitrate.

In this paper we report the action of ceric ammonium nitrate on polyhydroxyalkyl pyrroles and furans,
presenting an easy route to 3-substituted-2,5-diformylpyrroles which are key intermediates in porphyrin
syntheses based on “3+1” condensation.!”

The products of the reaction of readily accessible 3-ethoxycarbonyl-2-methyl-5-(D-arabino-
tetritol-1-yl)pyrrole 1 (68% from D-glucosamine in one step) with CAN in acetonitrile-water at room
temperature are shown in the Scheme. Ceric ammonium nitrate is able to provoke the oxidative cleavage of
the polyhydroxyalkyl—side chain and the concomitant oxidation of the 2-methyl group on the pyrrole ring.
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depending on the rate of addition of the oxidising reagent. The optimal yield (66%) was observed when 11
equiv. of CAN was added slowly (1 equiv. each 15 min); the rapid addition of all the reagent to the starting

material gave a complex mixture of decomposition products and 2 was isolated only in 10% yield. This
was probably due to the high initial Lewis acid concentration, since it is known that aqueous CAN solutions
are acidic. Compound 2 can also be obtained in 58% yield from aldehyde 3'® by reaction with 6.5 equiv. of
CAN. Compound 3 was readily obtained in 91 % yield after treatment of 1 with NalOs;. When the
oxidation of 3 was carried out with 4.2 equiv. of CAN, the partially oxidized intermediate 3-
ethoxycarbonyl-5-formyl-2-hydroxymethylpyrrole (4)*° was obtained in 23% yield together with 2 in 40 %
yield.

The same reaction conditions applied to commercially available 2,5-dimethylpyrrole lead to a complex
mixture of decomposition products. Thus, the presence of an electron-withdrawing substituent, such as

ethoxycarbonyl, in the pyrrole system seems to be necessary for the success of the reaction.

Another path" ay for the synthesis of compound 2 is the reaction of D-glucosamine with ethyl 4,4-
diethoxy-3-oxobutanoate followed by oxidative degradation of the polyhydroxyalky! side-chain; however,
the low yield in the first step makes this procedure of little preparative value.*!
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The same reaction conditions were applied to furan derivatives, and different results were obtained.
Thus, the slow addition of CAN (5.0 and 11.0 equiv.) to compound 5 produced the oxidative cleavage of
the polyhydroxyalkyl chain, no oxidation of the 2-methyl group was observed and compound 6 was
obtained in 38 - 48% yield. As in the case of pyrrole 1, the rapid addition of CAN caused decomposition of
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The difficulty in the oxidation of the 2-methyl group of the furan ring seems to be related to the
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the later 2-methyl oxidation. In order to favour this oxidation, the oxidative glycol cleavage was avoided by



carrying out the reaction on the tetra-O-benzyl derivative 7.2 However, both slow and rapid addition of 5
equiv. of CAN caused oxidative furan ring opening and a mixture of the two acyclic isomers 8~ (Z+E) in a
ratio 1:1.3 (measured by integration of signals in the '"H-NMR spectra) was formed. No products of the 2-

methyl oxidation were detected. The structure of 8 was in agreement with IR, NMR and MS data.
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Reaction Conditions

(i) CAN, 11 equiv., MeCN-H;O (5:1), 2 h 45 min, 2: 66%. (ii) NalOs, MeOH-H,0, 3: 91%. (iii) CAN, 6.5 equiv.,
MeCN-H;0 (9:1), 15 min, 2: 58%. (iv) CAN, 4.2 equiv., MeCN-H;O (9:1), 15 min, 2: 40% yield + 4: 23%. (v) CAN,
5 equiv., MeCN-H:0 (5:1), 1 h 15 min, 6: 38% yield; 11 equiv., 2 h 45 min, 6: 48%. (vi) BnBr, NaH, DMF, 7: 70%.

(vii) CAN, 5 equiv., MeCN-H;O (9:1), 1h 15 min, 8: 34%

Typical Procedure for Oxidation with Ceric Ammonium Nitrate: To a stirred solution of the starting material (1.0
mmol) in MeCN-H;O (40 mL) at r.t., ceric ammonium nitrate was added over a period of time (by adding 1 equiv. each
15 min). After the total reaction time the reaction mixture was diluted with ether, washed with water (3 x 25 mL), dried

(‘N’a;S\ ) and evapora[ecl to glve the crude proauct that was pul'lﬂeﬂ Dy crystallxsatlon from btUH-HzU or Dy coiumn
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In conclusion, a new and efficient one-pot synthesis of pyrrole-2,5-dicarbaldehydes is described. The
method is applicable to a pyrrole ring having an electron-withdrawing substituent and appears to be
dependent on the m-electron density of the heterocyclic ring. The scope and limitations of this method are

currently under study in our laboratory.
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